WakeIQX Playground
Experience the 3-layer temporal intelligence architecture with interactive scenarios. Each demo shows how WakeIQX tracks context across time dimensions: Past (WHY), Present (HOW), and Future (WHAT).
🎮 WakeIQX Playground
Experience 3-layer temporal intelligence with interactive scenarios
Development Session - Causal Chain
See how Layer 1 (Causality Engine) tracks decision history backwards through time
Memory Tier Evolution
Watch how Layer 2 (Memory Manager) manages context lifecycle over time
Future Context Prediction
See Layer 3 (Propagation Engine) predict which contexts you'll need next
Save Context & Reconstruct Reasoning
Create a new context and later understand WHY it was created
Semantic Search Across Time
Find contexts by keyword and see how they connect across all 3 layers
About These Examples
All scenarios above are based on real MCP tool implementations with:
- Actual tool schemas from the WakeIQX codebase
- Real 3-layer architecture (Causality, Memory, Propagation)
- Authentic responses matching actual tool output format
What You're Seeing:
- User Query - Natural language question about context
- Tool Invocation - MCP server selects appropriate tool and parameters
- Tool Result - Temporal intelligence analysis across layers
- WakeIQX Response - Actionable insights with causal chains, memory tiers, and predictions
The 3-Layer Brain Architecture:
┌─────────────────────────────────────────────────────┐
│ Layer 3: PROPAGATION ENGINE (Future - WHAT) │
│ Predicts which contexts will be needed next │
└─────────────────────────────────────────────────────┘
↑
┌─────────────────────────────────────────────────────┐
│ Layer 2: MEMORY MANAGER (Present - HOW) │
│ Manages context relevance and lifecycle │
└─────────────────────────────────────────────────────┘
↑
┌─────────────────────────────────────────────────────┐
│ Layer 1: CAUSALITY ENGINE (Past - WHY) │
│ Tracks decision history and reasoning chains │
└─────────────────────────────────────────────────────┘Key Features Demonstrated:
- 🔍 Layer 1: Causality Engine - Backward causal chain reconstruction
- 💾 Layer 2: Memory Manager - Memory tier evolution (ACTIVE → RECENT → ARCHIVED → EXPIRED)
- 🔮 Layer 3: Propagation Engine - Multi-factor prediction scoring (40% temporal, 30% causal, 30% frequency)
- ⚡ Cross-Layer Integration - How all three layers work together
- 📊 Temporal Analytics - Statistics and insights across time dimensions
Memory Tier System:
| Tier | Age | Purpose | Example |
|---|---|---|---|
| 🔥 ACTIVE | < 1 hour | Hot, frequently accessed | Current work session |
| ⚡ RECENT | 1-24 hours | Warm, recently used | Today's context |
| 📦 ARCHIVED | 1-30 days | Cold, aging | Last week's work |
| ❄️ EXPIRED | > 30 days | Pruning candidates | Old contexts |
Prediction Scoring Algorithm:
Combined Score = (Temporal × 0.4) + (Causal × 0.3) + (Frequency × 0.3)
- Temporal (40%): Recent access patterns and momentum
- Causal (30%): Position in causal chain (root causes score higher)
- Frequency (30%): Overall popularity and access count
Want to Try the Real Thing?
To use WakeIQX with your own projects:
- Install Claude Desktop - Required for MCP integration
- Clone the Repo - Open source on GitHub
- Follow Setup Guide - 5-minute configuration with Cloudflare D1
Real-World Use Cases
🔍 Development Session Tracking
// Save context with causality
save_context({
project: "my-app",
summary: "Implemented OAuth2 authentication",
context: "Chose OAuth2 over JWT for third-party integrations",
causedBy: "ctx_security_discussion_123",
actionType: "implementation",
rationale: "Need social login providers"
})
// Later: Why did I choose OAuth2?
reconstruct_reasoning({
snapshotId: "ctx_oauth_implementation_456"
})
// → See the full causal chain back to original discussion💾 Memory Management
// Check memory health
get_memory_stats({
project: "my-app"
})
// → See tier distribution, identify expired contexts
// Clean up old contexts
prune_expired_contexts({
limit: 50
})
// → Remove contexts older than 30 days🔮 Proactive Context Loading
// Get prediction scores
get_high_value_contexts({
project: "my-app",
minScore: 0.6,
limit: 10
})
// → Pre-fetch likely-needed contexts before starting work
// Update predictions
update_predictions({
project: "my-app",
staleThreshold: 3600 // 1 hour
})
// → Recalculate scores for fresh recommendations⚡ Full Workflow Example
// Morning: Start work session
const recentContexts = await load_context({
project: "my-app",
limit: 5
})
// Identify what you were working on
const causalChain = await build_causal_chain({
snapshotId: recentContexts[0].id
})
// Get predictions for today's work
const predictions = await get_high_value_contexts({
project: "my-app",
minScore: 0.7
})
// Work throughout the day, saving contexts...
// Evening: Check memory health
const stats = await get_memory_stats({
project: "my-app"
})Technical Deep Dive
Interested in how the 3-layer architecture works under the hood?
- Architecture Overview - Complete system design
- Layer 1: Causality Engine - Decision history tracking
- Layer 2: Memory Manager - Lifecycle management
- Layer 3: Propagation Engine - Prediction scoring
- Tools Documentation - All 12 MCP tools
- API Reference - Service interfaces and entities
Ready to add temporal intelligence to your AI workflows?
Past → Present → Future | Temporal Intelligence for AI Agents 🐦
