Skip to content

3-Layer Brain Architecture โ€‹

WakeIQX implements a temporal intelligence brain with three specialized layers that work together to provide AI agents with sophisticated context awareness across time dimensions.

The Three Layers โ€‹

n::: tip Research Foundation The 3-layer temporal architecture (Past-Present-Future) implements principles from semantic intent research. This design treats context as a living graph where each node carries semantic meaning about why it exists, how it remains relevant, and what future value it holds.

๐Ÿ“š Read the foundational research: Semantic Intent as Single Source of Truth :::

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Layer 3: PROPAGATION ENGINE (Future - WHAT)        โ”‚
โ”‚  Predicts which contexts will be needed next         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                         โ†‘
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Layer 2: MEMORY MANAGER (Present - HOW)            โ”‚
โ”‚  Manages context relevance and lifecycle            โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                         โ†‘
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Layer 1: CAUSALITY ENGINE (Past - WHY)             โ”‚
โ”‚  Tracks decision history and reasoning chains       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Overview โ€‹

Each layer serves a distinct temporal purpose:

๐Ÿ” Layer 1: Causality Engine (Past) โ€‹

Answers: "WHY was this context created?"

Tracks the causal relationships between contexts, allowing you to:

  • Trace decision history backwards through time
  • Understand what led to each context being created
  • Reconstruct reasoning chains from root causes
  • Analyze action types and their dependencies

Key Features:

  • Causal chain tracking with causedBy relationships
  • Action type classification (conversation, decision, file_edit, tool_use, research)
  • Reasoning reconstruction from any point in time
  • Analytics on decision patterns

Learn more about Layer 1 โ†’


๐Ÿ’พ Layer 2: Memory Manager (Present) โ€‹

Answers: "HOW relevant is this context now?"

Manages the lifecycle and accessibility of contexts using memory tiers:

  • ACTIVE (< 1 hour): Hot, frequently accessed contexts
  • RECENT (1-24 hours): Warm, recently used contexts
  • ARCHIVED (1-30 days): Cold, aging contexts
  • EXPIRED (> 30 days): Candidates for pruning

Key Features:

  • Automatic tier classification based on access patterns
  • LRU (Least Recently Used) tracking
  • Memory pressure management
  • Intelligent pruning of expired contexts

Learn more about Layer 2 โ†’


๐Ÿ”ฎ Layer 3: Propagation Engine (Future) โ€‹

Answers: "WHAT contexts will be needed next?"

Predicts future context relevance using multi-factor scoring:

  • Temporal momentum (recent access patterns)
  • Causal chain position (root causes are more valuable)
  • Access frequency (popular contexts are more likely to be reused)

Key Features:

  • Prediction scoring (0.0 to 1.0)
  • Pre-fetching optimization
  • High-value context identification
  • Propagation reason tracking

Learn more about Layer 3 โ†’


How the Layers Work Together โ€‹

Example: AI Agent Conversation Flow โ€‹

typescript
// User starts a new conversation
save_context({
  project: "user-123",
  content: "I want to refactor the authentication system",
  metadata: {
    actionType: "conversation",
    causedBy: null  // Root cause
  }
})
// โ†’ Layer 1: Records as root cause
// โ†’ Layer 2: Marks as ACTIVE tier
// โ†’ Layer 3: Initializes prediction score

// Agent researches the codebase
save_context({
  project: "user-123",
  content: "Authentication is in src/auth/*.ts with JWT tokens",
  metadata: {
    actionType: "research",
    causedBy: "<previous-context-id>"  // Causal link
  }
})
// โ†’ Layer 1: Links to parent context
// โ†’ Layer 2: Marks as ACTIVE tier
// โ†’ Layer 3: Scores high (recent + causal chain)

// Agent makes a decision
save_context({
  project: "user-123",
  content: "Decision: Use OAuth2 instead of JWT for better security",
  metadata: {
    actionType: "decision",
    causedBy: "<research-context-id>"
  }
})
// โ†’ Layer 1: Extends causal chain
// โ†’ Layer 2: ACTIVE tier, high access count
// โ†’ Layer 3: Very high score (decision nodes are valuable)

// Next day - Agent continues work
load_context({ project: "user-123" })
// โ†’ Layer 1: Reconstructs reasoning chain
// โ†’ Layer 2: Updates tiers (yesterday's contexts now RECENT)
// โ†’ Layer 3: Predicts high-value contexts to pre-fetch

update_predictions({ project: "user-123" })
// โ†’ Layer 3: Recalculates all prediction scores

get_high_value_contexts({ project: "user-123", minScore: 0.6 })
// โ†’ Returns: Decision context (0.85), Research context (0.72)
// โ†’ Pre-fetch these for faster access

Design Principles โ€‹

1. Temporal Separation of Concerns โ€‹

Each layer focuses on one time dimension:

  • Layer 1: Historical causality (past)
  • Layer 2: Current relevance (present)
  • Layer 3: Predictive value (future)

2. Observable Operations โ€‹

All layer operations are:

  • Deterministic: Same input โ†’ same output
  • Traceable: Full audit trail
  • Testable: Unit tests for all components

3. Performance Optimization โ€‹

  • Layer 1: Lazy chain building (only when needed)
  • Layer 2: Efficient tier recalculation
  • Layer 3: Cached predictions with staleness tracking

4. Scalability โ€‹

  • Layers operate independently
  • Async operations for heavy computations
  • Efficient database queries with proper indexing

Architecture Patterns โ€‹

WakeIQX uses Hexagonal Architecture (Ports & Adapters) to maintain clean separation:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚           Presentation Layer                   โ”‚
โ”‚  (MCP Protocol, HTTP Endpoints)                โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚           Application Layer                    โ”‚
โ”‚  (ToolExecutionHandler, MCPProtocolHandler)    โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚             Domain Layer                       โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
โ”‚  โ”‚  ContextService (Orchestrator)          โ”‚  โ”‚
โ”‚  โ””โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
โ”‚     โ”‚            โ”‚            โ”‚                โ”‚
โ”‚  โ”Œโ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
โ”‚  โ”‚ Layer 1 โ”‚ โ”‚  Layer 2  โ”‚ โ”‚   Layer 3    โ”‚  โ”‚
โ”‚  โ”‚Causalityโ”‚ โ”‚  Memory   โ”‚ โ”‚ Propagation  โ”‚  โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚        Infrastructure Layer                    โ”‚
โ”‚  (D1Repository, Workers AI, KV Store)          โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Learn more about Hexagonal Architecture โ†’


Technology Stack โ€‹

  • Runtime: Cloudflare Workers (Edge computing)
  • Database: Cloudflare D1 (SQLite at the edge)
  • AI: Cloudflare Workers AI (llama-3.1-8b-instruct)
  • Protocol: Model Context Protocol (MCP)
  • Language: TypeScript with strict typing

Learn more about the Tech Stack โ†’


Database Schema โ€‹

All three layers share a unified context_snapshots table with specialized columns:

sql
CREATE TABLE context_snapshots (
  id TEXT PRIMARY KEY,
  project TEXT NOT NULL,

  -- Core data
  content TEXT NOT NULL,
  summary TEXT,
  tags TEXT,

  -- Layer 1: Causality columns
  action_type TEXT,
  caused_by TEXT,
  rationale TEXT,

  -- Layer 2: Memory columns
  memory_tier TEXT,
  last_accessed TEXT,
  access_count INTEGER DEFAULT 0,

  -- Layer 3: Propagation columns
  prediction_score REAL,
  prediction_reasons TEXT,
  last_predicted TEXT,

  -- Timestamps
  timestamp TEXT NOT NULL,
  created_at TEXT DEFAULT (datetime('now')),

  -- Indexes for performance
  INDEX idx_project ON context_snapshots(project),
  INDEX idx_memory_tier ON context_snapshots(memory_tier),
  INDEX idx_prediction_score ON context_snapshots(prediction_score DESC)
);

Learn more about Database Schema โ†’


Next Steps โ€‹